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LETTER TO THE EDITOR 

Topological dimension and local coordinates 
from time series data 

D S Broomhead, R Jones and Gregory P King? 
Royal Signals and Radar Establishment, St Andrews Rd, Gt Malvern, Worcestershire WR14 
3PS. UK 

Received 7 April 1987 

Abstract. A method for the estimation of the topological dimension of a manifold from 
time series data is presented. It is based on the approximation of the manifold near a 
point x by its tangent space at x. The dimension of the tangent space is estimated by 
constructing a maximal set of linearly independent vectors from the data near x using the 
method of singular value decomposition. The method is used to analyse experimental data 
obtained from a non-linear electronic oscillator in a chaotic state. 

Recently techniques have appeared in the literature for analysing time series data for 
geometric information relating to the attractor of the underlying dynamical system 
[l-31. These techniques assume that the attractor lies within a smooth, finite 
dimensional manifold M (dim(M) = m). An embedding of M is then constructed 
using delays or derivatives of time series data. An embedding preserves the topological 
structure of the manifold and important information about the restriction of the 
dynamical system to the manifold. These embedding techniques are used as the basis 
for the calculation of, for example, Lyapunov exponents and various fractal dimensions 
and entropies [4]. 

Rigorous justification for this approach was given by Takens [ 21, following Whitney 
[5] who showed that M can always be embedded in the Euclidean space R”, where 
n 2 2 m  + 1 (although fewer dimensions may be sufficient for particular manifolds). In  
practice, however, the absence of a simple and effective estimate for m limits the 
usefulness of this result. We present a resolution of this difficulty whereby m, the 
topological dimension of M, can be estimated from time series data. This leads naturally 
to a description of M ,  obtained from experimental data, in terms of its basic mathemati- 
cal structure, i.e. a collection of locally flat neighbourhoods related globally by a set 
of charts. Topological dimension is an integer and is easy to compute. The calculation 
uses standard algorithms whose convergence properties are well known and are robust 
in the presence of noise. 

The subject of this letter is an extension of earlier work on the singular system 
analysis of time series data [3]. The method of delays [2] is used to construct the 
sequence, 9, of n-dimensional vectors {x l ,  x 2 , .  . . , x N }  where x:= (U,, U,,,, . . . , U,+,-,) 
from the measurements {U,, u 2 , .  . . , u N t n - , } .  The fundamental entity in the singular 
system analysis is the rectangular trajectory matrix X whose rows are the {x:}. The 

t Also at: Department of Mathematics, Imperial College, London SW7 ZBZ, UK. 
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right singular vectors of X are a natural orthonormal basis for the embedding space. 
The corresponding singular values (the global singular spectrum), which are the RMS 
projections of the trajectory onto the set of singular vectors, give a crude indication 
of the distribution of the entire attractor in the embedding space. 

In  general, the global singular spectrum has d significant, deterministic components 
and n - d components dominated by noise. Thus the attractor is effectively contained 
in the d-dimensional subspace spanned by the corresponding d singular vectors. This 
partitioning implies that, for noisy finite precision data, d 3 2m + 1 should replace 
n 3 2m + 1 in Takens' theorem. The value of d says nothing about the value of m 
since d is sensitive to arbitrary curvature in the embedding of M and hence is not an 
invariant of the embedding process [3]. To use a singular spectrum to obtain an 
estimate lit for m such curvature effects must be eliminated. 

A manifold M is a topological space which locally looks like R" [ 6 ] .  Thus, for a 
small enough neighbourhood of any point X E  M, the effects of curvature become 
unimportant and M is well approximated by its tangent space at x. 

A local analysis about a point x E 9 uses those elements of q which lie within an 
open ball of radius E centred on x. These points are represented by the N h x d  
&-neighbourhood matrix B , ( x )  whose rows consist of the vectors (x, - where {x,} E 9 
such that Ix, - X I  < E .  For sufficiently small E the rows of B , ( x )  are approximately 
tangent vectors to M at x. Then if &> m, we make the generic assumption that the 
rows of B , ( x )  span the tangent space of M at x. Since the rank measures the number 
of linearly independent rows of a matrix, the rank of B, (x) is, generically, the dimension 
of M. 

The most effective numerical method for obtaining the rank of a general matrix is 
through its singular spectrum [7]. Thus a local analysis of the experimental trajectory 
leads to a local singular system analysis using the neighbourhood matrices B , ( x ) .  In 
this case the singular vectors give a local coordinate system centred at x, while the 
local singular spectrum characterises the disposition of sample points within the E ball 
centred at x. 

In practice, E cannot be made arbitrarily small since both the quantity and precision 
of the data are finite. We therefore estimate the effects of curvature with a model 
calculation. Let y denote a point in the neighbourhood of x. In suitable local 
coordinates yT= ( y l ,  y, ,  . . . , y,, f m + l ( { y , } ) ,  . . ., f d ( { y , } ) ) ,  where f: R" +Rd-"  is such 
that f ; ( { O } )  = 0 and af;({O})/ay,  = 0 for m + 1 C i C d and 1 S j  S m. We assume that 
m = 2, d = 3 and f3(y1, y z )  = ay: + 6 ~ 1 . ~ 2  + cy: + O ( y 3 ) ,  where a, b and c determine the 
local curvature of the manifold. Formally, the singular spectrum of B , ( x )  is the square 
root of the eigenvalue spectrum of BTB,, and the singular vectors of B , ( x )  are the 
eigenvectors of BTB,. Each matrix element of BfB, is a covariance of components 
of y averaged over the points in the neighbourhood. Thus 

where ( ) =  (l/Nh)zk ( 1, k = 1 , .  . . , Nb. Assuming an isotropic, randomly sampled 
neighbourhood in the continuum limit this matrix reduces to a form that can be readily 
diagonalised to yield the following singular values of B , ( x ) :  {i N ~ " E ,  4 N Y ' e  + O ( e ' ) ,  
( P N b ) " 2 ~ 2 + O ( ~ 4 ) } ,  where P is a numerical factor depending on a, b and c. 
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In the absence of curvature or for small enough E ,  rank(B,(x)) = m = 2. This is an 
example of the general result anticipated above. The two singular vectors of B , ( x ) ,  
corresponding to the significant singular values, span the tangent space at x. Since the 
significant singular values, normalised by N;”, measure the R M S  radius of the neigh- 
bourhood projected onto the tangent plane, they scale linearly with E .  This model 
ignores the possibility of the manifold being ‘thin’ in some dimension. If  the 2-manifold 
is a narrow ribbon, one of the linearly growing singular values will saturate as E 

increases beyond the width of the ribbon. The third singular vector is normal to the 
manifold at x, and its corresponding singular value measures the deviation of the 
manifold from the tangent plane. In  this example the deviation is due solely to local 
curvature and scales as E ~ ,  At degenerate points on the manifold f3 O ( y k ) ,  and the 
third singular value scales as E ~ .  

In summary, we expect for small enough E that the local singular spectrum for a 
neighbourhood of an m-manifold in Rd will have m approximately equal singular 
values above a ‘noise floor’. As E is increased these will grow linearly until saturation 
or the effects of curvature in the manifold become noticeable. The remaining d - m 
singular values, which are dominated by noise, are independent of E until the effects 
of curvature become important. These singular values will then grow as E’ or faster. 

In chaotic systems a thin direction may be associated with the corresponding cross 
section of the attractor being a Cantor set. A model calculation using a Cantor set 
constructed by removing the ‘middle rth’ from a straight line segment of length L 
embedded in some Rd, and assuming a uniform distribution of N b  points on this set, 
shows that the neighbourhood matrix has unit rank and a corresponding singular value 
(J = N;”L/(3 - r)”’ where r E (0,l). Thus for E > L, a/ Ny’ will appear as a saturated 
singular value which must exceed the noise floor if any aspect of the Cantor set is to 
be experimentally observable. As E decreases from L, a/ Nil2 decreases in the form 
of a devil’s staircase [8]. Typically, the observability of this in an experiment will be 
limited by noise and finite amounts of data. 

These ideas are used to analyse experimental data taken from a non-linear electronic 
oscillator with natural frequency 270  Hz [9]t. The output was quantised with a 14 
bit A / D  converter sampling at 10 KHz. Approximately 2.5 x lo5 samples of the time 
series were taken with the oscillator in a chaotic state following a sequence of period 
doubling transitions. After removal of its mean, the time series was normalised by its 
standard deviation of 2441 A/D levels. The global singular spectrum, calculated using 
n = 50, yields d = 5 .  Figure 1 shows a projection of the trajectory, and also shows the 
points about which we analyse the manifold locally: at ~ 2 3  the flow is compressive and 
densely samples the manifold, at ~ 9 2  the flow is divergent, strongly curved, and sparsely 
samples the manifold, and at xZw the flow is transitional between the other two cases. 
These points serve as examples of the types of local structure that we have observed 
in this system. The results of the calculations are summarised in figures 2-4 which 
show plots of the local singular spectrum, scaled by 2N,’/*, as a function of E. For 
computational convenience we restricted N b  to a maximum of 250 points, although at 
the smallest values of E used, values of Nb --- d (but greater than f i )  were found to be 
adequate. 

We implemented our algorithm on a 16 bit minicomputer with double precision 
floating point hardware and the singular value decomposition was done directly on 
the neighbourhood matrix using the Golub-Reinsch algorithm (NAG-F02WAF). The 

t Details of this oscillator and its analysis will be discussed in a future publication. 
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Figure 1. A projection of 2000 samples of the trajectory reconstructed from the time series. 
The numbers indicate the positions x ~ ~ ,  xg2 and xZo9 of the origins of the neighbourhoods 
used in the analysis. The direction of the Row is anticlockwise. The point B maps to C, 
while D maps to a region near A. 

- 2  0 

Figure 2. A log-log plot of the local singular spectrum scaled by 2N;1'2 against the radius, 
E ,  of neighbourhoods taken about the point x13. The horizontal broken lines mark the 
range of the global singular values found in the noise. For comparison of the data with 
the model calculation, the diagonal line is a plot of E .  

total time taken for the search for the neighbourhoods and the decomposition of the 
neighbourhood matrices for the three reference points was about 100 min. This time 
was dominated by the search for the neighbourhoods. 

Figure 2 shows the results of the local analysis for xZ3: there are two singular values 
which scale linearly with E and three which are independent of E and are in the noise 
(estimated from the global singular spectrum). We conclude that 6 = 2. 

The results of the local analysis for xzo9, shown in figure 3, are similar to those for 
x23. However, for E > a new feature appears: singular values grow from the 
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Figure 3. A plot similar to figure 2, for neighbourhoods taken about x20y. The line marked 
1 is a plot of E. The line marked 2 has slope 2 and is for comparison with the plot of the 
singular value growing from the noise floor. Here the comparison is inconclusive. 

_ _ _ _ _ _ _ _ _ _ -  ' : . e '  
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Figure 4. A plot similar to figures 2 and 3 for neighbourhoods taken about xg2. Note the 
smaller singular values which begin to scale as E' as they grow out of the noise. 

noise faster than E indicating curvature effects on the scale of the neighbourhood. 
Note that this means that the curvature of the manifold is greater here than in the 
region near ~ 2 3 .  

The results for x92 are shown in figure 4. Here two singular values scale linearly 
with E for E < lo-'. At greater E saturation and  curvature effects dominate. In addition, 
curvature effects are apparent in the three smallest singular values over the entire range 
of E.  At the smallest accessible values of E ,  two of them scale as E * ,  In order to bring 
all three into the noise, we estimate from the figure that values of E < lo-' will be 
required. Below this limit the manifold should appear flat. A covering dense enough 
to resolve the required length scales in this region is impractical since the divergent 
flow implies that here the natural measure [lo] is small. 
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The calculations were repeated in a ten-dimensional subspace spanned by the first 
ten singular vectors. This produced no change other than an increase in the number 
of local singular values in the noise floor. 

We conclude from our results that the flow constructed from the data is confined 
to a manifold whose topological dimension is two. However, to avoid self-intersection 
of the trajectory the flow must explore a third dimension. Indeed, the folding associated 
with the re-injection apparent in figure 1 implies a Cantor set structure in this third 
dimension. As discussed above, there is nothing intrinsic to a Cantor set which makes 
it invisible to a rank calculation. In the present case the thickness of the Cantor set 
is masked by experimental noise. 

More detailed information about the manifold may be obtained from the projection 
shown in figure 1. In this figure the flow is anticlockwise: the portion from AC to BD 
(which contains xZ3) is the weakly curved, compressive region already referred to, 
while the portion from BD to AC is the strongly curved region containing ~ 9 2  and ~ 2 0 9 .  

Despite the distortion of the latter region, our analysis indicates that the whole manifold 
consists of a two-dimensional ‘ribbon’. Moreover, by following the trajectory, we see 
that B is mapped to C while D is mapped to a region near A. Thus the ribbon contains 
a half-twist and is, therefore, a Mobius band. 

This result is connected with the fact that the oscillator was observed in a state 
reached through a period doubling sequence. Theoretically, it is known that close to 
a period doubling bifurcation the unstable manifold of a limit cycle is an attracting 
Mobius band [ l l ] .  We conjecture, therefore, that the attractor observed in this 
experiment is close to the unstable manifold of the limit cycle from which the period 
doubling sequence developed. 

Our approach to the definition and calculation of topological dimension using 
finite sets of data points is an extension of earlier work on the singular system analysis 
of time series. Recently, however, we have been made aware of previous work in this 
area. Of this the work found in the psychometrics literature [12] and more recent 
work in the signal analysis literature [ 131 is based on the concept of iterative perturba- 
tion of the data points. The purpose of this is to deform the data set so that it fits into 
a minimum linear subspace whose dimension may be readily estimated. The motivation 
for this approach is to make more efficient use of the data in making the dimension 
estimate. The penalty is the loss of detailed local geometric information (e.g. local 
curvature). Moreover, the distortions must in general destroy the topological structure 
inherent in the data. 

The work of Trunk [ 141 and of Froehling et a1 [ 151 adopted a statistical approach 
based on a goodness of fit of local linear models of the data taken over the whole data 
set. The paper by Froehling et a1 was the first to apply these methods to the attractor 
of a dynamical system. They set out to estimate an ‘approximate fractal dimension’ 
for strange attractors represented as branched manifolds. A problem with their 
approach is that the ,y2 statistic employed suffers distortion due to the orientation of 
the linear subspace containing the local data. This necessitated that the fit be performed 
twice for each linear model in each neighbourhood making the proceudre computa- 
tionally inefficient. On the other hand, the singular value method orients the singular 
vectors so that the mean square error due to assuming that the data is fitted by any 
k-dimensional plane is minimised by choosing the plane spanned by the first k singular 
vectors. Note that for one calculation this method allows the goodness of fit to be 
checked for the whole range of possible values of k since the squared error is the sum 
of the squares of the remaining d -  k singular values. A further difficulty with the 
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approach taken by Froehling ef a1 arises with the histogramming technique employed 
to display the distribution of the x2 statistic for the whole attractor. This emphasises 
the first large fall in the error and obscures effects due to the attractor being thin in 
some directions. 

The work most directly connected with ours is that of Fukunaga and Olsen [16]. 
Their approach is mathematically equivalent to ours in that they derive a local 
Karhunen-Loeve basis by diagonalising the local covariance matrix. The distinctions 
that arise are due to differences in the intended application. The starting model of 
Fukunaga and Olsen is a randomly sampled manifold. In our case the manifold is 
not randomly sampled since the data is generated by a deterministic dynamical system 
and is thus found correlated within the attractor. It is therefore common to find thin 
directions, boundaries to the data, and correlated gaps (as in Cantor sets), all of which 
give discernable features in the scaling behaviour of the local singular spectra. Estimates 
of rank using ad hoc criteria, such as the number of eigenvalues exceeding a specified 
percentage of the largest eigenvalue or the number of eigenvalues before the first large 
decrease, cannot be expected to take account of these effects and can thus lead to 
erroneous estimates of m in the current application. 

In this letter we have presented a method for the calculation of the topological 
dimension of a manifold constructed from time series data and applied it to the analysis 
of experimental data taken from a non-linear electronic oscillator. This technique is 
based on the approximation of the manifold near a point x by its tangent space at x. 
The dimension of the tangent space is estimated by constructing a maximal set of 
linearly independent vectors from the local distribution of points near x using the 
method of singular value decomposition. We suggest that the estimates of d from the 
global analysis and m from the local analyses can be used to check the embedding 
criterion (modified for noisy, finite precision data) d 3 2 m  + 1. 

0 1987 Controller HMSO London 
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